Self-Attention Between Datapoints

Going Beyond Individual Input-Output
Pairs in Deep Learning

Most of deep learning relies on parametric
prediction. But what if it didn’t?
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parametric and/or non-parametric.

Summary

We introduce Non-Parametric Transformers (NPTs). NPTs ...
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... take the entire dataset as input. (We approximate this with minibatches for large datasets.)

... use multi-head self-attention to predict from relationships between datapoints.

... rely on (stochastic/deterministic) masking to form a reconstruction loss objective.

... can be used for class./regression/missing data/self- and semi-supervised and transductive learning.

In practice, they learn to rely on non-parametric
mechanisms, achieving SOTA performance
on tabular datasets.

Experimentally, NPTs ...

... show strong performance on tabular datasets, and promising performance for image classification.
... learn to rely on other datapoints for prediction.
... can solve complex reasoning tasks.
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